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Numerical analysis of quasiperiodic perturbations for the Alfvén wave
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The Alfvén wave may have a localized eigenfunction when it propagates on a chaotic magnetic
field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a
simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-
dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation.
The short wavelength Alfvén wave equation for the ABC-flow magnetic field has a quasiperiodic
potential term, which induces interference among “Bragg-reflected” waves with irregular phases.
Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of
short wavelength modes have been numerically analyzed to demonstrate the existence of localized

Alfvén wave eigenmodes.

PACS number(s): 52.35.Bj, 02.30.—f, 03.40.Kf, 42.25.—p

I. INTRODUCTION

The magnetohydrodynamic (MHD) spectra in three-
dimensional magnetic fields are a challenging subject of
perturbation theory for linear operators. It is well known
that magnetic field lines have magnetic surfaces if the
magnetic field has an ignorable coordinate, i.e., it is two
dimensional. A three-dimensional magnetic field does not
have surfaces, generally, and field line chaos may occur.
Therefore, the spectral structure of the MHD operator
is drastically changed in a three-dimensional magnetic
field. Among some different branches of MHD spectra,
the Alfvén wave is the paradigm of the chaotic pertur-
bation of the magnetic field since the Alfvén wave prop-
agates primarily in the direction parallel to the ambient
magnetic field and thus its spectrum is strongly influ-
enced by the field line structure.

In a homogeneous plasma, the dispersion relation of
the Alfvén wave is given by a simple relation

2 1

(B k=0, (1)

w

where w is the frequency, k is the wave number vector,
po is the plasma mass density, and uo is the vacuum
permeability. The parallel wave number term (B - k)2
comes from the principle part (B - V)2 of the MHD op-
erator, which represents the degenerate characteristics of
the Alfvén wave. In a nonuniform magnetic field, (B-V)?
yields continuous spectra [1-4]. Detailed analyses of the
Alfvén spectra have been done for various geometries,
such as cylindrical geometry [5], axisymmetric toroidal
geometry [2,6,7], and nonaxisymmetric toroidal geome-
try [8-10]. Recently the toroidal effect on the axisym-
metric configuration has been attracting much interest
because the toroidicity perturbs the continuous spectrum
to produce gaps and furthermore to yield point spectra
which correspond to the toroidicity-induced shear Alfvén
eigenmodes (7,11]. Recent theory [12] studied three-
dimensional magnetic fields and predicted point spectra,
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invoking the analogy of the Alfvén wave in a chaotic mag-
netic field and the valence electron wave in a quasilattice
[13].

In this paper, we present numerical analyses of the
spectra of Alfvén waves in a slab geometry with three-
dimensional perturbation. The unperturbed magnetic
field has magnetic surfaces given by ¢ = const. Three-
dimensional perturbation yields chaos of field lines. Our
model equation is derived for a chaotic magnetic field rep-
resented by Arnold-Beltrami-Childress (ABC) flow. We
consider a special class of Beltrami functions which is
characterized by

V x B = AB, 2)

where A is a constant. In plasma physics, a magnetic field
B that satisfies (2) is force free because V x B/uq par-
allels the current density and hence the magnetic stress
(V x B) x B/ o vanishes in the Beltrami function. The
reader is referred to [14] for the mathematical background
of the eigenfunctions of the curl. The ABC flow is a sim-
ple example of the Beltrami function, which, in Cartesian
coordinates reads

Asin Az + Ccos \y
BsinAz + Acos Az |, 3)
C'sin Ay + B cos Az

B(z,y,2) =

where A, B,C, and ) are real constants. One easily finds
that (3) satisfies (2). Field lines are given by da/ds =
B(x), where € = (z,y, z). Figure 1 shows Poincaré plots
of ABC flows. There exist magnetic surfaces in the whole
area when at least one coordinate is ignorable. Magnetic
surfaces are destroyed when B is three dimensional, i.e.,
none of A, B, and C is zero.

The eikonal approximation for short wavelength allows
us to reduce the three-dimensional equations into a one-
dimensional Schrédinger equation with a quasiperiodic
potential [12]. The spectra of quasiperiodic Schrodinger
equations have been studied with a smooth potential [15]
and with an impulse potential [16]. The method used for
spectral analysis of [15] is slightly different from that of
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FIG. 1. Poincaré plots of ABC flows with (a) B = 1 and
A=C=0,(b)B=1,C=0.3,and A=0,and (c) B=1,
C = 0.3, and A = 0.2. Here A\ = 2.

[16]. Here we apply the latter method to the smooth
potential. In Sec. II two types of the one-dimensional
Alfvén wave equations are discussed. The method for
numerical analysis is described in Sec. III. Results are
given in Sec. IV.

II. ALFVEN WAVE EQUATION

We consider a slab plasma with a sheared magnetic

field

0
Bsin Az (4)
Bcos Az

BO(z) =

and perturb it with

Asin Az + C cos Ay
Acos Az
C'sin \y

BM(y,z) =

whetg |A|,|C| <« |B|. The perturbed magnetic field
B = B© 4+ B® js an exact force-free equilibrium; see
(3). To simplify calculations, we neglect minor terms and
retain the principal terms of the Alfvén wave equation
(we assume short wavelengths) and obtain

?yp 1 o2
POHE = uo(B V)4, (6)

where 1 is the vorticity of the deformation in the wave.
Substituting the unperturbed magnetic field By into (6),
we obtain

8? 2. . 8 a\?

Ef’/’ =V3 (sm/\:cé; + cos /\mé—z-) P, (7
where V4 = B/,/poto is the Alfvén velocity. Define a
local coordinate s in the direction of B(%)(z), i.e., Vs =

B /|B(©)|. Then (7) reads
o2
ds?

Fourier transform from ¢ to w and define E = w?/V}? to
obtain

32

oV = VA

P. (8)

d2
— TV = Ev. (9)

When the perturbation B(Y) is applied, (9) is modified
into

7] . 7] 0
— [a + (€1 sin Az + €3 cos /\y)gg + €; cos /\zl—a—y—

a 2
+egsin /\ya] ¥+ O()) = Ev, (10)

where €, = A/B and e; = C/B [12]. For some classes of
waves, (10) simplifies into ordinary differential equations.
First we assume 8,9 = 0 at £ = xzo. Let the angle
between the wave vector k and B(®) be tan~!x. Then
|| scales the ratio of perpendicular and parallel wave
numbers, ie., K = O(ky/kj). We consider waves with
large |x| and short wavelength (|x| > |A|). For fixed «,
(10) reduces into

d d
~ S+ V) 2% = B, (11)

where V (s) is an effective potential that is generated by
the perturbation

V (s) = v cos(Ap18) + v sin(Apzs + 6o), (12)

where v; = €1(sinAzo + KcosAzg), v2 = €z(cos Azg —
Ksin Azg), p1 = cos Azg, pa = sin Az, and zo and 6o are
fixed numbers.

Another class of waves is characterized by long par-
allel wavelengths (low frequencies). We consider a lo-
cal mode on a surface £ = zo and write ¥(z,y,2) =
e~k2(@—=20)’y(y,z). We consider short perpendicular
wavelengths in the y-z plane and assume

(Al ~ lk||| < Ik.l.lvlkzla (13)
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FIG. 2. Quasiperiodic potential for 1 = v2 = 04,
o= (1++/5)/2, and A = 2.

where A~1! is the scale length of the perturbation B,
Neglecting terms that are of order ¢; and ¢z, we obtain

2
LY+ Vs = By, (14)

where U(s) is a perturbation potential for the Alfvén
wave, which is written as

U(s) = a1 sin(Ap18) + az cos(Apzs + 6g), (15)

where a; = k.€1, az = k €z, and 6 is a fixed number.
The amplitudes |a;| and |az| of the perturbation may be
large (of order \), when |k,| is sufficiently large.

When either A or C is zero, or the ratio o = pz/u, is
a rational number, V'(s) and U (s) are periodic functions.
When both A and C are finite and ¢ is an irrational num-
ber, V(s) and U(s) are quasiperiodic (almost periodic)
functions. Figure 2 shows V(s) with ¢ = (1 + v/5)/2
(the golden ratio). Solutions for the quasiperiodic poten-
tial are completely different from those for the periodic
potential as discussed below.

III. NUMERICAL ANALYSIS

In this section we present numerical analysis of the
one-dimensional Alfén wave equations and show that
point spectra occur when the amplitude of the quasiperi-
odic perturbation becomes large. The correspond-
ing eigenfunctions are spatially localized, resembling
Anderson-localized electron wave functions in a quasi-
lattice [9,16,17). We solve the eigenvalue problems (11)
and (14) by three different methods and compare results.

The eigenvalue problems (11) and (14) are written in
the form of the first order differential equations

d (¥ 0 1 ¥
7 P E 2V (s) .
¥ TAFvE)y? 1+ve) ) \Y

(16)

and
0 1
<) Y1, an
¥ U(s)—E 0 P

respectively, where f indicates the derivative of function
f. We solve (16) and (17) with imposing an initial con-

dition 4(0) = [4(0),%(0)]. To find spectra of equations
(11) and (14), we solve (16) and (17) with the parame-
ter E. When E belongs to the point spectra, the corre-
sponding solution (s) decays to zero at long distance.
However, it diverges at large s if E is slightly deviated
from the spectra. This problem is overcome by treating
Eq. (11) or (14) as a boundary-value problem. As for the
initial-value method, the shooting method is also effec-
tive. The advantage of the initial-value method is that
we can easily find whether the eigenvalue E belongs to
continuous spectra or point spectra.

Since (16) and (17) are linear equations, Lyapunov ex-
ponents are easily calculated by multiplying discrete ma-
trices on (16) or (17); cf. [18]. We use the Lyapunov
exponents to observe the long term behavior of ¥(s) and
find the point spectra, continuous spectra, and resolvent
set.

In solving the eigenvalue problem as an initial value
problem, we introduce the phase angle

-1 \/Z_?’p(s)
¥(s)
to reduce numerical instability. The evolution of ¢(s) is

governed by a nonlinear differential equation; for (16) we
obtain

¢(s) =tan (18)

% =VEcos?¢+ VE[1+V(s)] 2sin?¢  (19)
and for (17)
d 2
d_f =vVE - ——U\/(L_:) sin? @, (20)

where we neglect the first order derivative of V'(s) in (16)
for short wavelengths. From ¢(s) we can calculate the
winding number [9,16,19] defined by

w(E) = lim @. (21)

8—00 8

The winding number corresponds to the final value of
angular velocity in the phase space, which is a nonde-
creasing function of E with plateaus on which w(E) has
a constant value (mp; + np2)/2 (m,n=0+1,42,...).
Gaps of spectra (resolvent) correspond to the plateaus of
w(E).

A self-adjoint operator has two different groups of spec-
tra, the point spectra and the continuous spectra. The
Lyapunov exponent of the phase angle is a strong tool
for distinguishing continuous spectra from point spectra.
We linearize (19) to obtain

id&?d’ = VEsin2¢ {[1 +V(s)72 - 1} 5 (22)
and (20) to obtain
dé U? .
d_j =— \/%9) sin 2¢ 49, (23)

where d¢(s) is a small perturbation of ¢(s). The Lya-
punov exponent is defined by
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TABLE I. The classification of E. p, oc, and op denote
resolvent set, continuous spectrum, and point spectrum, re-
spectively. @ means the empty set.

dw(E) dw(E)
| aE 0} —a5_ "
Ay(E) = ol 0 I oc
Ay(E) <O p op
Ao(B) =ty "I00(8)/5000)] ”

When A4(E) = 0, the wave function 1(s) does not di-
verge or decay to zero at large |s|. Hence the correspond-
ing eigenfunction (with infinite energy) belongs to the
continuous spectra. When A4(E) < 0, 9(s) is either un-
stable or localized. An unstable solution corresponds to
the resolvent set, while a localized solution is an eigen-
function corresponding to a point spectrum. The relation
between w(E) and Ay4(FE) is summarized in Table I.

It is usually difficult to obtain eigenfunctions by solving
(16) or (17) because of numerical instabilities. We thus
appeal to the shooting method, i.e., we impose initial
conditions on both end points at long distance and seek
E, which makes the logarithmic derivations of the left-
hand-side and right-hand-side solutions have the same
value at the connection point.

As the third method, we treat (11) and (14) as
boundary-value problems. We assume |, = ¥[p = 0
for large |b — a|. We discretize (11) and (14) into
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FIG. 3. Overview of continuous spectrum for (a) the
quasiperiodic potential (2 = 0.4) and (b) the periodic po-
tential (v, = 0). Here A = 2m.
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FIG. 4. (a) Lyapunov number A4. (b) Winding number w.
(c) Continuous spectra. (d) Spectra obtained from the bound-
ary-value problem. (e) Spectra obtained from the shooting
method. Here ¢ = (1 + /5)/2 and A = 27. E = w?/V}
(where V4 is the Alfvén velocity and w is the frequency. The
length is normalized by the scale of the domain.
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FIG. 5. (a) Lyapunov number A4. (b) Winding number w.
(c) Continuous spectra. (d) Spectra obtained from the bound-
ary-value problem. (e) Spectra obtained from the shooting
method. Here o0 = 3/2 and A = 2m.



where, for (11), the diagonal and off-diagonal elements
o; and B; = v; are given by

14V,_1)? (Q+V)?
Otj=( h2 D + h;+= » J=1,2,...,N, (26)
1+Vie1)®
ﬂ,:’yjz———h;———, ]=1,2,...,N—’1, (27)
and, for (14),
2 .
a,—=ﬁ+Uj2, j=1,2,...,N, (28)
1 .
ﬂJ=’)’J=—E§, ]=1,2,...,N—'1, (29)

where h = (b — a)/(N + 1). This formula requires the
assumption that the step width h is much smaller than
the characteristic length of the potential V(s) or U(s)
and that |b — a| is sufficiently large. The matrix of the
eigenvalue problem (25) is a symmetric tridiagonal one.
We solve the characteristic equation

det(AI — A) =0, (30)
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FIG. 6. Eigenfunctions from boundary-value method and
the quasiperiodic potential V(s). Here v; = v = 0.4 and

o= (1+5)/2.
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using the method based on Sturm’s theorem, and corre-
sponding eigenvectors are computed by inverse iteration
method. The computational time is shorter than the pre-
viously described initial-value method.

IV. RESULTS

We now present numerical results from two types of
reduced equations (11) and (14). An overview of the
spectra of (11) is shown in Fig. 3(a). The continuous
spectra, which are characterized by A4(FE) = 0, are plot-
ted for various vy, with 0 = (1++/5)/2 and v = 0.4. One
observes that forbidden zones develop as the perturbation
amplitude v, increases, and for large v, , the bands of con-
tinuous spectra become narrow and even disappear. This
behavior is compared with the periodic perturbation; see
Fig. 3(b). In Fig. 4, the Lyapunov exponent A4(E), the
winding number w(E), and the spectra from the three
different methods are plotted for v; = v, = 0.4 and
o=(1+ \/3)/2 As discussed in Sec. III, A4(E) = 0 cor-
responds to the continuous spectrum and dw(E)/dE = 0
to the resolvent set. For small or large E, the comple-

¥(s) 0.1 E=3.5081662762
0.05
© ottty sttty
-0.05
-0.1
o 50 100 150 200 250
S
¥ (s) 0.1 E=8.509344936
0.05
0 o
-0.05
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o 50 100 150 200 250
S
¥ (s) 0.1 E=185417221117
0.05
0 - ol
-0.05
0.1
o 50 100 150 200 250
S
¥ (s) 0.1 E=195177028703
0.05
0
-0.05
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0 50 100 150 200 250
S
quasiperiodic potential
V()15
1
0.5
0
-0.5
-1
-1.5
0 50 100 150 200 250

s

FIG. 7. Eigenfunctions from the shooting method and the

quasiperiodic potential V(s).
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FIG. 8. Overview of continuous spectrum for (a) the
quasiperiodic potential (az = 4.0) and (b) the periodic po-
tential (a1 = 0). Here A = 2m.

mentary set of {E|A4(E) = 0} is equal to the set of
{E|dw(E)/dE = 0}. For intermediate E, we find E that
satisfies Ay(F) < 0 and dw(E)/dE = 0, which implies
that E is a point spectrum. On the other hand, when the
ratio ¢ = p2/p1 is a rational number, a point spectrum
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FIG. 9. (a) Lyapunov number A4. (b) Winding number w.
(c) Continuous spectra. (d) Spectra obtained from the bound-
ary-value problem. (e) Spectra obtained from the shooting
method. Here 0 = (1 + /5)/2 and A = 2r. E = w?/V}
(where V4 is the Alfvén velocity and w is the frequency). The
length is normalized by the scale of the domain.
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does not occur; see Fig. 5.

Eigenfunctions were calculated by the boundary-value
method and the shooting method (Figs. 6 and 7). Gen-
eralized eigenfunctions corresponding to the continuous
spectra do not decay at long distance. Eigenfunctions
corresponding to point spectra are spatially localized, so
that they have finite energies. In addition to them, un-
stable solutions that grow exponentially at long distance
were found in the gap because of numerical errors. Both
methods give similar results.

Next, we discuss the second eigenvalue problem (14).
Figures 8(a) and 8(b) show overviews of the continuous
spectra for the quasiperiodic and periodic perturbations,
respectively. In contrast to the first eigenvalue problem
(11), a gap appears in the neighborhood of E = 0. Witha
quasiperiodic perturbation, we obtain point spectra with
strongly localized eigenfunctions. Figure 9 shows the
Lyapunov exponent Ay(FE), the winding number w(E),
and the spectra calculated from the three different meth-
ods. For small E, the magnitude of the Lyapunov ex-
ponent is much larger than that of the first case, which
implies that the localization is strong. The correspond-
ing eigenfunctions calculated from the boundary-value
method are shown in Fig. 10. Figure 11 shows the eigen-
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of — o
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0 50 100 150 200 25?
¥ (s) E=17,1485500336
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0! [— ;
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0 50 100 150 200 2550
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0.1
-0.1
(1] 50 100 150 200 25?
¥ (s) E=37,1305618286
0.1
O | Hi-tletroin-deit-Mosjogooti-fetpsionlimb-Heob-rofi-ir-4-Hriiel-4
-0.1
0 50 100 150 200 2550
quasiperiodic potential
U@Gsis
10
5
o
-5
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155 50 100 150 200 250

FIG. 10. Eigenfunctions from the boundary-value method
and the quasiperiodic potential U(s). Here a; = a2z = 4.0 and

o= (1++5)/2.
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FIG. 11. Eigenfunctions from the shooting method and
the quasiperiodic potential U(s). Here a1 = a2 = 4.0 and

o= (1++5)/2.

functions calculated from the shooting method. The re-
sults from both methods agree well. However, the spectra
at F ~ 15.6 and E ~ 17.1 are not found by the shoot-
ing method because the connection of the left and right
solutions is difficult to converge when |[A4(E)| is large.

V. SUMMARY

We have analyzed the Alfvén wave equation numeri-
cally and demonstrated the existence of localized Alfvén-
wave eigenmodes in a chaotic magnetic field. The ABC
flow is a paradigm of chaotic stream lines and is a simple
exact solution to the three-dimensional force-free plasma
equilibrium equations. We have derived equations of
Alfvén waves propagating on the ABC flow magnetic
field. The three-dimensional structure of the magnetic
field is represented by sinusoidal quasiperiodic modula-
tion. We have considered two different branches of short
wavelength modes. Both waves satisfy Schodinger-type
equations with quasiperiodic potentials, which represent
the three-dimensional modulation. The first branch is
characterized by short parallel wavelengths (high fre-
quencies). To obtain a localized eigenmode with a high
frequency, we need a relatively large perturbation, which
resembles the tight-binding system [12]. The second
branch assumes large k; and long parallel wavelength.
A large k,; enhances the effect of perturbation; see (12)
and (15). In the limit of |k, | — +oo, the characteristic
equation (the eikonal) of the Alfvén wave equation, which
is identical to the magnetic field line, gives the orbit of an
Alfvén wave beam. A narrow beam with a chaotic orbit
(i.e., the magnetic field line) may not have a long scale
structure, so that the field line chaos yields a localized
eigenmode.
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